117. A Convenient and Diastereoselective Route to Homoallyl Alcohols: Addition of (Z)- or (E)-Alkenyl-dimethoxyboranes to Aldehydes¹)

by Katsuramaru Fujita and Manfred Schlosser

Institut de Chimie organique de l'Université, Rue de la Barre 2, CH-1005 Lausanne

(5.IV.82)

Summary

(Z)-2-Butenyl-dimethoxyborane adds smoothly to propanal and benzaldehyde to afford the homoallyl alcohols (R^*, R^*) -1 and (R^*, R^*) -2. In contrast (E)-2-butenyl-dimethoxyborane leads to adducts having the (R^*, S^*) -configuration. Dimethoxy-(Z)-2-pentenylborane, dimethoxy-(Z)-(2-methyl-2-butenyl)borane and (2Z, 4E)- or (2E, 4Z)hexadienyl-dimethoxyborane, treated with propanal, give (R^*, R^*) -3, (R^*, R^*) -4, $(E), (R^*, S^*)$ -5 and $(Z), (R^*, R^*)$ -5, respectively. A transition state model implying a pericyclic electron motion is in perfect agreement with the regio- and stereoselective outcome of these borane reactions.

Alkenes are easily converted to pure (Z)- or (E)-alkenyl-dimethoxyboranes employing allyl-type organopotassium compounds as key intermediates in stereodefensive [2] or stereoselective reaction sequences [3] [4]. As anticipated [5-8], these alkenyl-dialkoxyboranes add to aldehydes in a regioselective and stereoselective manner. The vinylogous position with respect to the boron-bearing C-atom attacks the carbonyl group. Therefore, the formation of a new C, C-linkage is accompanied by a double-bond shift. Furthermore, one diastereoisomer is obtained almost exclusively in every case: (Z)-alkenylboranes produce *erythro*adducts; (E)-isomers lead to *threo*-adducts.

¹⁾ Part X of the series 'Selective Syntheses with Organometallics'; part IX: [1].

When (Z)-butenyl potassium [9] was treated consecutively with fluorodimethoxyborane and propanal at -75° , 62% of (R^*, R^*)-4-methyl-5-hexen-3-ol ((R^*, R^*)-1) was obtained after warming up to 25°. Only traces of the other stereoisomer were detected, the diastereoisomeric composition being 96:4 on average. The same reaction sequence applied to (E)-butenyl potassium yields essentially pure (R^*, S^*)-1 (61%; erythro/threo 3:97). A sound explanation of the stereoselectivity may be based on the assumption of having a chair-like transition state mediating a cyclic transfer of electrons and the boryl group. To avoid steric repulsion by one of the methoxy substituents, the ethyl moiety of the propanal must occupy a pseudo-equatorial position.

The variation of the aldehydes and boranes only slightly affects the stereoselectivity of the addition and not its regioselectivity. (Z)-2-Butenyldimethoxyborane combined smoothly with benzaldehyde to afford 2-methyl-1-phenyl-3hexen-1-ol (2, 40%; $(R^*, R^*)/(R^*, S^*)$ 96:4). The (E)-isomer of the same borane gave 2 (50%; $(R^*, R^*)/(R^*, S^*)$ 1:99).

The addition of dimethoxy-(Z)-2-pentenylborane and dimethoxy-(Z)-(2-methyl-2-butenyl)borane to propanal afforded, respectively, (R^*, R^*) -4-ethyl-5-hexen-3-ol (3, 44%), and (R^*, R^*) -4, 5-dimethyl-5-hexen-3-ol (4, 34%). In the latter case the diastereoisomeric homogeneity of the product was superior (98:2) to the former (90:10).

Dienylboranes also exhibited regio- and stereoselective behavior. The U-shaped *exo*-hexadienylpotassium, generated from (E)-1,4-hexadiene, produced (2Z, 4E)-hexadienyldimethoxyborane, which, by reaction with propanal, gave (R^*, S^*) -4-vinyl-5-(E)-hepten-3-ol [(R^*, S^*) -5, 36%]. The isomeric (2E, 4Z)-hexadienyldimethoxyborane, derived from the W-shaped *endo*-hexadienyllithium (resulting from the lithiation of (Z)-1,4-hexadiene) afforded (R^*, R^*) -5 (31%).

The diastereoisomers 1-5 were identified by comparison with (*erythro/threo*)mixtures obtained from the addition of the corresponding allylmagnesium compounds to propanal or benzaldehyde. Although these reactions revealed again a high A'_{Nu} -regioselectivity, they are stereochemically randomized.

In one case, both the *Grignard* and the borane route turned out to be unsatisfactory. No matter whether dimethoxy-(3-methyl-2-butenyl)borane or (3-methyl-2-butenyl)magnesium bromide were treated with 3-methyl-2-butenal, a complex reaction mixture resulted and 3,3,6-trimethyl-1,5-heptadien-4-ol (artemesia alcohol, **6**) was only formed in poor yield. If the transition state model presented (*Scheme 2*) is correct, γ , γ -disubstituted allyl-type dialkoxyboranes cannot escape from placing one substituent in the sterically hindered pseudo-axial position. Thus, a sluggish and unselective reaction was to be expected.

The (R^*, R^*) - and (R^*, S^*) -configurations were assigned on the basis of their gas chromatographic properties and NMR. data. Generally, the (R^*, R^*) -component has a longer retention time [10] and its vinylidene signals appear at slightly higher field.

Financial support provided by the Schweizerische Nationalfonds zur Förderung der wissenschaftlichen Forschung is gratefully acknowledged. Sumitomo Chemical Company, Takaratsuka-Shi, kindly gave the permission for K.F.'s scientific leave. Finally, the authors thank Dr. E. Moret, Lausanne, for his collaboration and valuable suggestions.

Experimental Part

General remarks. See [9] [11] [12].

Condensation of alkenyl-dimethoxyboranes with aldehydes (general procedure). A solution of 45 mmol alkene, 40 mmol butyllithium and 40 mmol *t*-BuOK in 30 ml THF was kept 15 h at -50° . At -75° 20 ml of the fluorodimethoxyborane/ether (1:1)-adduct (88 mmol)²) and, 1 h later, 44 mmol of carefully purified aldehyde were slowly added under vigorous stirring. After keeping for another hour at -75° , the mixture was warmed up (in the course of 30 min) to 25° and was diluted with ether (100 ml), washed with brine (3×50 ml) and evaporated. The product was eluted from Kieselgel 60 (50 g) using hexane/ether 4:1 (ν/ν). It was further purified by distillation and, if necessary, preparative gas chromatography.

	Analytical columns (2.3 mm inner diameter)		Capillary column (0.5 mm inner	Preparative columns (8.0 mm inner diameter)	
	2 m 15% <i>C-20M</i>	2 m 15% SE-30	diameter) 26 m <i>C-20M</i> * (22,800 plates)	3 m 20% C-20M*	l m 10% <i>C-20M</i> *
1	140°	60°	70°	170°	_
2	210°	140°	150°	-	180°
3	150°	90°	73°	180°	
4	130°	60°	72°	-	100°
5	160°	100°	90°	-	120°

Table 1. Gas chromatographic separation of compounds 1-5: oven temperatures

²) In many cases, a strictly stoichiometric amount of fluorodimethoxyborane will suffice. The *t*-BuOLi, which is formed in the metallation step, was recognized to promote condensation and *Tischtschenko*-type dismutation reactions of enolizable aldehydes leading to erratic yields and stereoselectivity. Such complications were avoided by trapping the alcoholate with excess fluoro-dimethoxyborane or with added boron trifluoride. At 0° or 25°, boranes added always smoothly, although with somewhat lower stereoselectivity, to aldehydes without need of any special precaution.

		Table 2. [/]	H-NMR. spectra	of compounds 1-5 (3	60 MHz, CDCl ₃)			
	R"	Hcis	Hırans	H(-C-OH)	H(-C-R')	H(-0-)	R	R'
(<i>R</i> *, <i>R</i> *)-1	5.79	5.06 <i>d</i> ^a) (17.5)	$5.05 d^{4}$) (10.5)	3.38 <i>d× d× d</i> (8.7, 5.0, 3.9)	2.27 hex (6.6)	1.93 ^b)	1.54 $d \times qa \times d$ (14.0, 7.5, 3.9) 1.38 $d \times d \times qa$ (14.0, 8.7, 7.4) 0.66, 7, 7.4)	1.02 <i>d</i> (6.8)
(<i>R</i> *, <i>S</i> *)- 1	5.77 m ^c)	$5.11 d^{a}$) (17.0)	$5.12 d^{a}$) (10.4)	$3.33 d \times d \times d$ (10.2, 6.3, 4.2)	2.23 hex (7.0)	1.67 ^b)	$\begin{array}{c} 0.001 \\ 1.57 \\ 4.00 \\ 1.41 \\ 4.00 \\ 1.41 \\ 4.00 \\ 1.41 \\ 1$	1.03 <i>d</i> (6.6)
(<i>R</i> *, <i>R</i> *)-2	5.64 m ^c)	4.92 m ^c)	4.92 m ^c)	4.47 <i>d</i> (6.1)	2.47 hex (6.5)	3.03 ^b)	7.2 m	0.90 d (6.8)
(<i>R</i> *, <i>S</i> *)- 2	5.79 d×d×d (180-102-82)	5.16 d (18 0)	5.15 d (10.0)	4.32 <i>d</i> (7.8)	2.46 hex	2.21 ^b)	7.3 m	0.86 d (7.0)
(R^*, R^*) -3	$5.57 d \times d \times d$	$5.07 d \times d^{\rm a}$	$5.12 d \times d$	$3.40 d \times d \times d$	$2.01 m^{\rm c})^{\rm d}$	1.70 ^b)	1.6 <i>m</i>	1.3 <i>m</i>
(R^*, S^*) -3	$5.64 d \times d \times d$ (17.5, 10.2, 9.0)	$5.09 d \times d^{a}$ (17.5, 2.1)	$5.18 d \times d$ (10.3, 2.1)	3.39 m ^c)	$1.95 t \times t$ (8.5, 4.8)	1. / 8")	1.0 <i>m</i> ; 1.4 <i>m</i> ; 0.96 <i>t</i> (7.3)	1.3 m 0.89 t (7.4)
(<i>R</i> *, <i>R</i> *)- 4	$1.74 d \times d$	$4.84 d \times qa$	$4.77 d \times qa$	$3.49 d \times t$ (8.0.5.0)	$2.19 qi^{a}$) (6.5)	1.82 ^b)	1.5 m; 0.97 t (7.3)	1.05 d (7.5)
(<i>R</i> *, <i>S</i> *)-4	(1.3, 0.8) (1.3, 0.8)	(2.3, 1.4) (2.3, 1.4)	(2.3, 0.8)	(8.2, 3.0)	$2.20 d \times qu$ (8.4, 7.0)	1.85 ^b)	$\begin{array}{c} 1.67 \ d \times d \times qa \\ (14.0, \ 7.4, \ 3.0) \\ 1.35 \ d \times qi \\ 1.40 \ 7.3 \end{array}$	(7.3)
(R^*, S^*) -5°)	5.78 m ^c)	5.1 m	5.1 m	$3.40 d \times d \times d$ (8.5, 6.4, 3.8)	2.72 qi (7.2)	1.86 ^b)	(c.1, 0, 41) 0.99 t (7.5) 1.6 m 1.36 hex (7.4) 1.36 hex (7.4)	5.53 $d \times d$ (15.5, 6.2) 5.41 $d \times d \times d$
				-		, dop	(()) 1 ()	$\begin{array}{c} 0.141 \ a \times a \times q \\ (15.5, 8.2, 1.5) \\ 1.71 \ d \times d \\ (6.4, 1.3) \\ (6.4, 1.3) \end{array}$
(<i>R</i> *, <i>R</i> *)-5¢)	5.76 m ^c)	5.15 m ^c)	5.15 m ^c)	3.39 d×d×d (8.5, 7.5, 3.3)	(8.3) (8.3)	L. /8 ⁿ)	1.6 m 1.33 d×qi (15.6, 7.1) 0.96 t (7.3)	$\begin{array}{c} 5.60 \ d \times qa \times d\\ (11.0, 6.8, 1.0)\\ 5.33 \ d \times d \times qa\\ (11.0, 10.0, 1.8)\\ 1.65 \ d \times d\\ (7.0, 1.6)\end{array}$
^a) Additional f (<i>R</i> *, <i>R</i> *)- and (<i>F</i> *, <i>R</i> *), and	ine-coupling, ^b) br. s (R^*, S^*) -diastereoisor	, ^{c)} symmetrical, ner has respectiv oisomer show ur	d) presumably (vely, the (Z) - ar (vel) (Z)	$d \times d \times d$ (~ 16, 9, 7), id (E)-configuration 73 and 1.71 pnm.	possibly $t \times d \times d$; the allylic me	(9.5, 6.1, 3.9 thyl groups), ^{e)} the internal d of the $(Z)-(R^*, R)$	ouble-bond in the *)-, (Z) - (R^*, S^*)

1262

	Empirical Mol-wt.		Calc. %		Found %	
	formula		С	Н	С	Н
1	C ₇ H ₁₄ O	114.2	73.63	12.36	73,43	12.20 ^a)
					73.94	12.41 ^b)
2	$C_{11}H_{14}O$	162.2	81.44	8.70	81.26	8.92 ^b)
					80.89	8.97°)
3	C ₈ H ₁₆ O	128.2	74.94	12.58	75.13	12.49 ^c)
4	$C_8H_{16}O$	128.2	74.94	12.58	74.72	12.83 ^a)
					74.75	12.71°)
5	C ₉ H ₁₆ O	140.2	77.09	11.50	77.05	11.55 ^c)
a) (R*	, R*)-Stereoisomer.	^b) (<i>R</i> *, <i>S</i> *)-Stere	oisomer. °) Mix	ture of stereoisor	mers.	

Table 3. Combustion analyses of compounds 1-5

Complete metallation of (Z)- and (E)-1,4-hexadiene was achieved respectively with sec-butyllithium and, butyllithium in the presence of potassium tert-butoxide at -40° during 30 min.

Condensations of alkenylmagnesium bromides with aldehydes (general procedure). Anhydrous magnesium bromide was obtained by treating a vigorously stirred suspension of magnesium turnings in pentane/ether $1:1 (\nu/\nu)$. The white powder was filtered off under N₂ and washed with pentane/ether. At -75° , 45 mmol (8.3 g) of this magnesium bromide were added to the solution of the allyl-type potassium compound, prepared as described above. After 60 min, still at -75° , the almost colorless mixture was treated with 45 mmol aldehyde, warmed up to r.t. and worked up.

The $((R^*, R^*)/(R^*, S^*))$ -ratio of the products 1-5 was 44:50, 50:50, 38:62, 64:36 and 15:85, respectively. (R^*, R^*) -5 and (R^*, S^*) -5 consisted each of (Z)- and (E)-isomers in the ratio of 1:1 and 3:7, respectively.

The data for efficient gas chromatographic analysis or purification of compounds 1-5 are listed in *Table 1*. Hexanol (for 1), heptanol (3 and 4) and octanol (2 and 5) served as internal standards when the yields were determined precisely.

Tables 2 and 3 summarize respectively the NMR. microanalytical data of compounds 1-5. Correct IR. spectra and MS. were also obtained.

REFERENCES

- [1] M. Schlosser & P. Schneider, Helv. Chim. Acta 63, 2404 (1980).
- [2] H. Bosshardt & M. Schlosser, Helv. Chim. Acta 63, 2393 (1980).
- [3] G. Rauchschwalbe & M. Schlosser, Helv. Chim. Acta 58, 1094 (1975).
- [4] M. Schlosser & G. Rauchschwalbe, J. Am. Chem. Soc. 100, 3258 (1978).
- [5] B. M. Mikhailov, Organomet. Chem. Rev. A 8, 1 (1972).
- [6] R. W. Hoffmann & H.J. Zeiss, Angew. Chem. 91, 329 (1979); Angew. Chem. Int. Ed. Engl. 18, 306 (1979).
- [7] C. Margot, diploma thesis, EPF Lausanne, 1980.
- [8] M. Schlosser & K. Fujita, Angew. Chem. 94, 320 (1982); Angew. Chem. Int. Ed. Engl. 21, 309 (1982); Angew. Chem. Suppl. 1982, 646.
- [9] M. Schlosser, J. Hartmann & V. David, Helv. Chim. Acta 57, 1567 (1974).
- [10] H. Felkin, Y. Gault & G. Roussi, Tetrahedron 26, 3761 (1970).
- [11] J. Hartmann, R. Muthukrishnan & M. Schlosser, Helv. Chim. Acta 57, 2261 (1974).
- [12] M. Schlosser & B. Spahić, Helv. Chim. Acta 63, 1223 (1980), particularly 1230-1231.